

A Primer on Brain Development or/and

Why First 5 is Very Important to the Children of Northern California

Heidi M Feldman MD PhD
Professor. Stanford University
Proud Grantee of First 5 San Mateo

Learning Objectives: By the conclusion, participants should be able to explain the following:

- 1. Human brain is a dynamically developing organ
 - -Changes in brain structure and function
 - -Greatest changes occur in the first 5 years of life.
- 2. The brain develops through learning.
- 3. Many biological and social threats can alter or limit brain development, especially at young ages.
- 4. First 5 is positioned to maximize positive changes and limit negative forces

1. Human Brains Develop Dramatically

- The brain is structurally immature at birth
- Major changes dramatic in first 5 years
 - a) Size increases
 - b) Cortical surface folds
 - c) Number of synapses increases and then regress
 - d) White matter volume increases

1a. Size increases

- In the first 3 years of life, child's brain volume grows to approximately 80% of adult size
- By age five, it grows to about 90% of adult size

1b. Cortical Surface Folds

- The brain begins as a simple tube and folds into a complex structure
- Folding of the cortex provides increased surface area that leads to increased intellectual capacity
- Folding continues after birth

1c. Synapses Proliferate in Early Life

1c. Synapses

Synapse

1c. Early Growth of Synapses

1c. Synapses Increase then Decrease

Proliferation "Pruning" Improves Efficiency

1d. White Matter is Myelinated Axons

© 2000 John Wiley & Sons, Inc.

1d. White Matter Connects Brain Regions

1d. White Matter Increases with Age

1d. Myelination in First 5 years

1d. White Matter Strengths Connections

2. Brain Develops through Learning

- The brain is a selforganizing system
- Different from a computer that comes loaded with software
- Brain software develops through use
- Learning facilitated by warm social relationships

2. Poor Brain Growth after Neglect

2. Enhanced Brain Growth Through Experience

3. Threats to Healthy Brain Development

- Biological Factors
 - a) Prematurity
 - b) Fetal exposure to alcohol
- Psychosocial Factors
 - c) Toxic stress
 - d) Poverty

3a. Prematurity as Biological Risk

32-week Preemie

25-week Preemie

3a. Neurological Consequences

Brain of a Term Infant at Term

Brain of a 30-week Preemie at Term

- Reduced brain size
- Abnormal cortical folding
- Diffuse, excessive high signal intensity consistent with white matter abnormality.

3a. Injuries Associated with Prematurity

- Enlargement of the ventricles
- Irregular angular (scalloped) appearance of ventricular contours
- Loss of white matter with atrophy, notable present in the corpus callosum

3b. In Utero Alcohol Exposure

3c. High Levels of Stress/Distress

Positive

Brief increases in heart rate, mild elevations in stress hormone levels.

Tolerable

Serious, temporary stress responses, buffered by supportive relationships.

Toxic

Prolonged activation of stress response systems in the absence of protective relationships.

Brain Cell of Healthy Mouse

Brain Cell of Stressed Mouse

3d. Poverty and Brain Development

- Poverty includes
 - Inadequate and variable nutrition
 - Poor health care
 - Reduced exposure to learning opportunities
 - Increased risk of toxic stress
- Poverty robs children of learning potential

3d. Poverty and Brain Development

Degree of advantage to middle income children by neurocognitive domain

- Brain areas affected by poverty
 - Language
 - Executive Functions

4. First 5's Unique Opportunity

Without Intervention:

Average percentile rank on Math score, by income quartile

With Intervention: IQ Perry Preschool Program

Source: Perry Preschool Program. IQ measured on the Stanford-Binet Intelligence Scale (Terman & Merrill, 1960). Test was administered at program entry and each of the ages indicated.

With Intervention: Education Perry Preschool Program

Source: Barnett (2004).

Notes: *High achievement defined as performance at or above the lowest 10th percentile on the California Achievement Test (1970).

With Intervention: Economics at 27 years Perry Preschool Program

Source: Barnett (2004). *Updated through Age 40 using recent Perry Preschool Program data, derived from self-report and all available state records.

9/14/2011

With Intervention: Arrests Perry Preschool Program

Source: Perry Preschool Program. Juvenile arrests are defined as arrests prior to age 19.

Return to Investment at Different Ages

Summary

- Human brain is rapidly developing in first 5 years
- The brain develops through learning
- Biological and psychosocial threats impair learning and change brain structure and function
- Investments in children and their families early in life pay off

Summary

- Political forces threaten services for children birth to 5
- Children from advantaged environments by and large receive substantial early investment
- Children from disadvantaged environments often do not
- Strong case for public funding for interventions in early childhood for children who are disadvantaged, ill, disabled, and at risk for longterm disorders
- Our moral obligation to support young children and their families, for their sake and ours

Thank you!

